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1. Introduction

The estimation of surface roughness is of primary importance to the development of models
that represent atmospheric processes ranging from the microscale to the mesoscale.
Modeling efforts directly affected by surface roughness include complex terrain
mesometeorological algorithms, subjective and objective stability schemes, the fluxes of
sensible and latent neat into the lower atmosphere, the turbulent kinetic energy budget of the
surface boundary layer, and the surface energy balance. The topography--that is, the
configuration of an area or region of the earth's surface, including its relief and the position
of natural and manmade obstacles-is typically described in terms of roughness elements,
roughness lengths, zero plane displacements, or land-use categories with respect to mesoscale
wind fields, or probable sheltering effects of structures upon anemometers at airports. The
lack, or presence, of vegetation on a surface induces a change of the aerodynamic roughness
characteristics encountered by the mean wind flow over that surface. Increasing the height
or density of roughness elements will increase the surface and Reynolds stresses for the mean
wind flow and radically alter the vertical wind shear in both speed and direction. These
alterations to the mean flow affect both the vertical and horizontal diffusivities, the mean
wind speed and direction predicted by diagnostic or prognostic models, turbulent intensities,
and various other atmospheric parameters such as the vertical flux of sensible and latent heat
or the evapotranspiration. Consequently, the surface roughness length and the associated
zero plane displacement must be considered as an integral part of modeled atmospheric
processes.

Land-use categories are a very useful method of estimating surface roughness lengths. These
categories (that is, word-picture descriptions of human use of the earth; for example,
"abandoned agriculture," "village," "large city," "brush land and scrub growth") can be quite
effective in establishing representative roughness lengths. The land-use categories can be
expandes' to include terrain features such as hills and mountains that result in a form drag
contribr to surface roughness. Form (or pressure) drag arises as a result of separation
of flow a nd bluff bodies (such as hills or mountains) immersed in a fluid, such as the
atmosphere. Usually, a wake region of chaotic flow is where a pressure deficiency exists
on the lee of hills and mountains. Roughness lengths for such complex terrains are thus
much larger than the typical vegetative canopy would suggest.

Surface roughness lengths can be classified as either a local or a mesoscale effective
roughness length. Local or micrometeorological roughnesses are those usually associated
with studies conducted by using experimental data obtained with towers and masts.
Generally, tower wind and temperature profiles are observed over large homogeneous fetches
under stationary conditions. Calculated surface roughness lengths are then assumed to be
site calibration parameters.

Effective roughness lengths are those associated with mesoscale diagnostic or prognostic
models and reflect the drag and Reynolds stress characteristics that are representative of the
model's horizontal grid size and vertical mesh. The individual blocks of the horizontal grid
can represent widely varying terrain relief and vegetation. Thus, the effective roughness
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length will be a composite or aggregate of local values that allow the mean flow predicted
by the model to be in equilibrium with a heterogeneous surface at some arbitrary height
above ground level.

A compilation of available information on local surface roughness lengths may be used to
establish a comprehensive data base of this parameter with respect to geomorphic terrain
relief and land-use categories. These micrometeorological roughness lengths can, in turn,
be used as an aid in establishing the effective roughness lengths for mesoscale models and
other planetary boundary layer applications.

2. Surface Roughness and the Vertical Profiles

Nikaradse (1933), from measurements of fluid flow in pipes uniformly roughened with grains
of sand, found that, roughness length, z4 = h/30, where h is the roughness element height.
In the atmosphere, a good approximation for z4 is

z. - 0.08 to 0.15 h (1)

which yields fair results in the absence of more precise information. Tanner and Pelton
(1960) have noted that the relationship between surface roughness length and vegetation
height can be expressed as

log z. = a + b log h (2)

where Zo and h are in centimeters. Tanner and Pelton found that a = -0.883 and b = 0.997,
which is in good agreement with the coefficient of Sellers (1965) (a = -1.385, b = 1.417)
and those of Kung (1961, 1963) where a = -1.24 and b = 1.19.

Lettau (1969) suggested that the relationship between roughness and average vegetation
height took the form

z. = 0.5h(s/S) (3)

where s is the silhouette area (cm 2) of the typical obstacle seen by the wind, and S the
specific area measured in the horizontal plane. If n is the total number of roughness
elements on a site of area A, then S = A/n. The factor 1/2 corresponds to an average
aerodynamic drag coefficient. Lettau found that equation (3) yields estimates of z. that are
within +25 percent of values found from a detailed profile analysis.
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The surface roughness length was initially considered to be a constant of integration for the
logarithmic wind profile equation, which is usually written in differential form as

av -. (4)
Biz AZ

and in integrated form as

U z (5)

k z.

where V is the mean horizontal wind speed, k is Karman's constant, U. is the friction
velocity and represents the stress term, and z is height above the surface. Equation (5) may
also be expressed as

In z-d (6)
k Zo

where d is the zero plane displacement and represents a datum height above which normal
turbulent exchange occurs.

Equations (5) and (6) represent the neutral or adiabatic wind profile and cannot be used to
establish surface roughness in diabatic conditions. For thermally stratified mean flow
conditions, the Obukhov (1946) dynamic similarity theory must be invoked where the wind
profile is given by

a =". O(7)
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U. z d +(8)

where Ou is a dimensionless wind shear defined for the unstable regime as

OM I - 15 Ri )-4 (9)

and in stable flow as

OM = + 15 RJ (10)

In equations (6) through (8), z/L is the Monin and Obukhov (1954) scaling ratio, Ri is the
gradient form of the Richardson (1920) number, and Om(z/L) is adiabatic influence function.
According to Zhang and Anthes (1983), in unstable conditions

*m (ZIL) =-0.0954 - 1.86({) - -.7() 0-2 Zi~9(.~ (3

Hansen (1977) suggests that in stable flow

*M () L 15R (12)

The associated temperature profile may be written as

ae , O (13)
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e-e I z d + (14)
k L kL]

with 0 H a dimensionless lapse rate, T" a scaling temperature, ] potential temperature, and
e0 the potential temperature at z4. In the unstable regime

OH = (1 -15 Rz)- (15)

and

*() =-[0.201 - 3.23 ()- 1.99 ()2 - 0.474(.)s] (16)

In the thermally stratified stable regime

OR =OM; H L() L (17)

The relationships among the similarity parameters are, by definition,

= Ri _ . (18)
L O0

Therefore,

L 0RL-0,, (unstable) (19)
L

_. =Ri0M (stable) (20)
L
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where

S0a/8z (21)

(avlaz)

L=- U.",Pe (22)
kg (H + 0.075M

with L the Obukhov (1946) scaling length, c, the specific heat of air at constant pressure,
p the ambient density, g the gravitational acceleration, and H the sensible heat flux. . is
the latent heat of evaporation and E may be considered as either the evaporation or
evapotranspiration rate in millimeters.

Usually, local values of z7 are evaluated by using equation (5) or (6) for the neutral case or
equation (8) for adiabatic conditions. Equations (5), (6), and (8) can be solved algebraically
for z4 or graphically as suggested by Panofsky (1963). If In z + O(z/L) is plotted as a
function of V, then z7 is the intercept and k/u. is the slope. An example is shown in
figure L. Generally, application of equations (5), (6), and (8) should be restricted to the
use of high-quality profile data observed experimentally over homogeneous terrain under
stationary conditions.

3. The Zero Plane Displacement

The displacement length d is essentially an empirically determined constant that has been
introduced into the logarithmic and diabatic wind speed profiles to extend their usefulness
to very rough surfaces. This so-called constant can be regarded as a datum height above
which normal turbulent exchange takes place, and is comparable to the depth of an air layer
trapped in vegetation. The plane (z = d + z. ) can be regarded as the height of an apparent
sink of momentum within a canopy, according to Monteith (1965) and Thom (1971).
Stanhill (1969) has reviewed a large number of estimates for the displacement length for
canopies ranging in height from 0.2 to 20 m. These data are illustrated in figure 2. Stanhill
suggests that the following relationship exists between d and h:

*Figures are located at the end of the report.
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log d = 0.973 log h - 0.1536 (23)

However, Monteith implies that the estimates of d are too scattered to support the precision
of equation (23) and that

d = 0.63h (24)

fits as well as equation (23).

Generally, the value of d will fall between 0.6 and 0.8 of the height h of the roughness
elements. The exact ratio of d to h will exhibit a dependency on the spacing of the plants
forming the canopy and the ratio of the cumulative area of each element to the unit area of
the underlying surface. Zero plane displacements can also be shown to be a function of wind
speed. As wind speed increases, a flexible-stocked canopy will tend to flex in the alongwind
direction, flattening and being reduced in height. This is demonstrated in figure 3. Over
some surfaces, z7 will tend to increase and d decrease. In figure 3, in region I, z4 increases
and d shows a decrease as the wind speed increases from zero to some nominal value VI.
Montieth (1965, 1973) attributes this to a transfer of momentum from the canopy top to
layers deeper in the canopy. In region 11 between ul and u2, z7 decreases and d increases.
This is attributed to an increase of Reynolds number beyond the critical value, and form drag
becomes more important than skin friction. The behavior in region MI is characteristic of
a substantial lowering of the canopy when the plants bend at high wind speeds.

Thom (1972) has suggested that a good approximation for the roughness length z, based upon
d is

z. = k(h - d) (25)

which is in good agreement with equations (23) and (24) if d varies between 0.6 and 0.8 of
canopy heights as a function of wind speed, stock flexibility, and the stalk spacing within the
canopy.

An abridged listing of zero plane displacements gleaned from the literature is given in
table L. Then data are presented in ascending order of height h and displacement length
d. All values of d are considered to be estimates and were derived from analyses of wind

profiles.

*Tables are located at the end of the report.
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4. Roughness of Natural Surfaces

Natural surfaces will be designated as undeveloped hinterlands, that is, nonagricultural and
nonurbanized. Included in this category will be water surfaces, snow-covered vegetation and
terrain, forests, hills, mountains, and deserts. Roughness lengths obtained from many
sources for natural surfaces are compiled in table 2. A large number of the tabulated z.
values were calculated from the micrometeorological analysis of experimental data observed
over each of the particular surfaces. Some of the roughness lengths, however, are averages
or generic values summarized from many sources such as those extracted from the
Engineering Sciences Data Unit (ESDU) (1972) documentation.*

An item of particular interest in table 2 is the approximate 2.5 orders of magnitude seasonal
increase in z4 for tundra as reported by Lewis and Callaghan (1976). Seasonal variations in
surface roughness were also investigated by Luers, MacArthur, and Haines (1981) for a
number of surfaces. Their results for the annual regime of nine natural vegetated surfaces
are shown in table 3. The five-fold increase in the roughness length of a deciduous forest
from winter to summer is an indication of the importance of Leaf Area Index (Monteith
1973) to estimating surface roughness. The influence of the growing season and leafing is
reflected in the remainder of table 3 and graphically in figure 4.

5. Roughness of Agricultural Lands

The aerodynamic roughness of fields used for the growing of cash crops is an extremely
important parameter to the study of agricultural consumption of water resources. Surface
roughness enters into the investigation of evapotranspiration from irrigated acreages in
semiarid regions through its effects upon the vertical profiles of wind, temperature, and
specific humidity. The profiles are then, of course, utilized in conjunction with the surface
radiation balance to estimate evaporation and irrigation requirements.

Uncertainties exist in the roughness lengths for farmland and crops because of the limited
fetch across a typical field. These heterogenetics exist since most farm acreages consist of
a mixed bag of several crops, fallow fields, possibly a wood lot or two, and roads. Under
these circumstances, the mean flow is not in equilibrium with the surface. However, most
agronomists do not consider this to be a serious handicap.

Typical agricultural surface roughnesses are tabulated in table 4. Note that a mature corn
crop has a surface roughness length equivalent to unforested hills and low mountains (see
table 2). This large roughness is due to the density of cornstalks in a field.

*The ESDU is sponsored by the Royal Aeronautical Society, Institution of Chemical
Engineers, Institution of Mechanical Engineers, and the Institution of Structural Engineers,
London, UK.
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6. Roughness of Urban Areas

Urbanization may be thought of as covering the full spectrum of built-up areas from small
rural communities to the true megatropolis. Any grouping of a small number of buildings
will aid in altering the mean flow near the surface by increasing the roughness length.
Circumstances sometimes lead to an accumulation of structures because of geographical
features. As an example, two highways have a junction at the only feasible river crossing
in miles. At this junction, over the years a service station, caft, and mercantile are
established. Then a small motel and a bait shop are built since the fishing is good. In time,
other businesses and residents are added and the community or settlement acquires a name
such as Shagnasty's Corner. This is the lower limit of urbanization.

More properly, urbanization begins with the hamlet and reaches the ultimate in the primary
metropolitan statistical area or megatropolis. According to the United States Census Bureau,
a hamlet is the smallest urban area recognized. As defined in table 5, a hamlet is
unincorporated and lacks nearly all government furnished services except fire protection.
Table 5 explains inhabited areas by population ranges. The table is self-explanatory.

Table 6 is a listing of generic urban roughness lengths. Included in the compilation are such
urban features as large expanses of deserted parking lots (blacktop and concrete) well-
manicured lawns, airports, plus highway and railway roadbeds and rights-of-way. The final
six listings in table 6 define the typical surface roughness of large cities and metropolitan
areas.

The surface roughness length of cities is of worldwide interest and has applications to air
pollution, the surface energy balance and the all-encompassing urban heat island effect.
Roughness lengths for 46 cities are given in tables 7, 9, and 10 for North America, the
British Isles plus the Continent, and Japan, respectively. North American cities for which
data are available extend from Canada to Texas and from the midwest to the eastern
seaboard. Saint Louis, Missouri, has been the subject of an intensive investigation by
Clarke, Ching, and Godowitch (1982) who found that the roughness of Saint Louis ranged
from about 30 cm in the suburbs to approximately 170 cm in the central core. A second,
less extensive urban experiment was reported on by Yersel and Goble (1986) for Worchester,
Massachussetts. For one site in the city, surface roughness was estimated by using two
approaches and tabulated for 30- to 40-degree sectors of azimuth about the observation site.
These data are reproduced in table 8. For a neutral atmosphere, the logarithmic profile
assumption was used to establish z4 and compared with values calculated from the height of
the roughness elements divided by a constant, a method attributed to Brutsaert (1975). The
agreement is considered to be only fair. However, the dependence of surface roughness on
wind direction is obvious in both methods.

The United Kingdom and Continental urban roughness data are in good agreement with their
North American counterparts with the exception of roughness listed for Kiev and
Copenhagen. Hanna (1969), in an examination of urban micrometeorology, points out that
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Ariel and Kliwchnikova (1960) failed to include a zero plane displacement in their analysis.
As a consequence, Hanna found z, = 150 cm for Kiev. Hanna's reanalysis is shown in
figure 5. Jensen's (1958) surface roughness length for Copenhagen is abnormally high, also.
The zero plane displacement may not have been considered.

Japanese investigators have assembled what is probably the only national survey of urban
roughness. Table 10 shows estimates of surface roughness lengths for 25 towns and cities,
including a comprehensive study of Tokyo. These estimates were determined for various
sections of the city from the suburbs to the central core. The general trend of surface
roughness for Tokyo parallels that of Saint Louis, increasing towards the inner city. It
would appear that urban roughness is about the same worldwide, that is, a general increase
in z4 as a function of population and city area.

Yersel and Goble (1986) and Ayer (1978) have pointed out that in a typical metropolitan
area, only about 17 percent of the area consists of structures and 21 percent trees. The
remainder or 62 percent of the area is water surfaces, grassy areas, residential streets,
parking lots, and street canyons in the city core. This suggests that the large roughness
lengths for urban areas are the result of pressure or form drag rather than the aerodynamic
roughness of a surface.

Structures in an urban area may be considered to be bluff bodies and are characterized by
having a relatively large proportion of form drag. Flat plates normal to the mean flow are
examples of pure form drag. Aerodynamically speaking, the various types of drag are form
drag and viscous drag or skin friction. Combining these yields profile or parasite drag and
the numerical difference between the two types of drag is labeled residual drag. Typically,
form drag in unseparated flow is small, but large if flow separation or cavitation has
occurred. Viscous drag can be directly related to vertical shear or the Reynolds stresses.
The drag on two bodies placed close together is generally quite different from the sum of
the separate drag, is usually defined as interference, and becomes important when one body
is affected by the wake of another.

This is the case in an urban area where the roughness elements (buildings) are always
downwind of one another and not of uniform height, distribution, and cross-sectional areas.

7. The Effective Roughness Length

Fiedler and Panofsky (1972) have defined the effective roughness as the roughness length
which homogeneous terrain would have in order to produce the space-average downward flux
of momentum near the ground with a given wind near the surface. Expanding upon this
concept the effective roughness can be expressed as a function of the geostrophic drag
coefficient, the surface Rossby number and a suitable buoyancy parameter. The concept of
an effective surface roughness is necessary to properly scale the surface and Reynolds
stresses for inclusion in large-scale atmospheric models. In most complex terrain-mesoscale
models the friction velocity u. is used to represent the stress terms.
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Several numerical approaches exit for determining the effective surface roughness length over
some arbitrary area or region. The most common is to utilize the adiabatic wind profile, that
is, equation (5) and Rossby number similarity,

In(Ro) = A - In cg + { (.k. B2  (26")

where Ro = G/(fz0), the surface Rossby number, Cg = UJG the geostrophic drag
coefficient, f the Coriolis parameter, and A and B constants. For indifferent thermal
stratification

A= 1.5, B=4.0.

A second approach is to assume that the effective roughness length is mostly determined by
the roughest elements within the averaging domain.

Thirdly, Taylor (1987) advocates that the effective roughness length may be implied from
a grid-square average of local or micrometeorological roughness lengths from

ZO•)= Zom (27)

where

In zm (In z.) (28)

and < > may be construed as an ensemble average over the averaging domain.

A fourth approach utilizes weighting functions for a series of diminishing values of z, in each
grid of the mesoscale area. Smith and Carson (1977) used two weights of % and 'Is for the
major and minor roughness elements; van Dop (1983) initially weighted the largest fraction
as 0.67, the second 0.22, and the least prominent at 0.11. Van Dop then modified his initial
weights to obtain optimum agreement between calculated and observed values, resulting in
weights of 0.85, 0.125, and 0.025.

All four methods produce fair approximations of effective roughness lengths, but are
laborious to apply. A fifth approach suggested by Yamazawa and Kondo (1989) is an
elaborate regression scheme based upon four land utilization divisions shown in table 11,
with z7 calculated from
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z. = 40a + 125b + 200c + ll0d - 30 for 20 cm < zo < 150 cm (29)

where a, b, c, and d are the ratios of each utilization area to total fetch area. Fetch areas
are fan-shaped with a 45-degree central angle with a radius of 100 z4 where z. is anemometer
height. Again, the use of equation (29) would be extremely time-consuming.

Establishing an effective roughness length is necessary if adequate solutions are required for
mesoscale analysis, reliable estimates of atmospheric stability using either objective or
subjective schemes, and for solutions pertaining to the diffusion of windborne material.

8. Land-Use Categories

Kung's (1963) climatological effective surface roughness lengths for the northern hemisphere
successfully utilized land-use categories to classify regional roughness. Surface roughness
associated with land-use categories obviously is well within the realm of effective roughness
lengths. Land-use categories are simply general, or common, verbal descriptions of the
world around us. It is relatively simple to define the association between surface roughness
lengths and a subjective description of the terrain for which z. was determined. Figure 6
consists of an abridged listing of effective roughness lengths with respect to land-use
categories. Figure 6 is in the ESDU (1972) format. Included are both rural and urban
information that may be used to estimate aerodynamic roughness for areas and regions where
no actual micrometeorological measurements are available or practical.

9. Discussion

Counihan (1975) summarized a large number of roughness lengths obtained either by direct
measurement or by inference. Unfortunately, these data are tabulated by the year the
observations were reported and alphabetically by author rather than by land-use category or
by numerically ascending order. Site descriptions are also vague, being in terms of city
names or simply urban; by terrain descriptions such as trees, rural, grass, sea, woods,
coastline, or snow. Sorting out these data in an orderly array would be an onerous chore.
Overall, however, this very complete history of the surface roughness length provided many
clues to sources of information for this study.

An attempt was made to include only roughness length values that were determined by using
good scientific and engineering practice. Several suspect studies were excluded after an
independent evaluation of the data was made.

Throughout the roughness length literature, there are indications that sufficient accuracy
for profile applications is obtained with surface roughness estimates within a factor of 2
or so. Rachele et al. (1991) found that for surface energy balance evaluations an error
in estimating z. of only 30 percent led to rather alarming errors in both the sensible and
latent heat fluxes as well as a 30- to 42-percent error in the Obukhov (1946) length.
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Apparently the sensitivity of micrometeorological data to variations in the roughness

length is quite critical.

10. Conclusions

Surface roughness length data has been examined with respect to several categories of land
use and terrain relief. Additionally, the role of the surface roughness with respect to wind
and temperature profile analysis has been discussed, as well as the areal effective roughness
length. Urban roughness was scrutinized with respect to the effects of form drag of
buildings and interference drag components of upwind structures. A general rule regarding
surface roughness lengths can be tentatively expressed that z. - 0.1 the height of the
roughness elements, and for mesoscale areal estimates that Z7 is numerically the equivalent
of the largest upwind roughness elements. A reasonable upwind fetch for applying this crude
estimate would be about 3 km.
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Figure 1. Example of windspeed V (m/s) plotted against In z, where z. is the intercept
and k/u. is the slope.
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Table 1. Zero Plane Displacements as a Function of Canopy Heights

Vegetation Displacement
Height, h, length, d,

Canopy meters meters Source

Lawn 0.01 0.007 Monteith 1973

"Alfalfa 0.24 0.13 Stanhill 1969

Rice 0.90 0.85 Stanhill 1969

"Corn 1.09 1.00 Stanhill 1969

Corn 2.30 0.95 Monteith 1973

Corn 2.90 1.80 Stanhill 1969

Orange grove 4.20 3.00 Stanhill 1969

"Scattered trees, shrubs 8.00 5.30 Garratt 1978

tScattered trees, shrubs 9.50 6.10 Garratt 1978

Pine forest 20.00 13.10 Thorn 1971

Coniferous forest 25.00 22.00 Stanhill 1969

"immature crops
"0roughness element spacing about 20 m
troughness element spacing about 10 m
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Table 2. Roughness Lengths of Natural Surfaces

Type of Surface zJ cm Source

Ice 0.001 Deacon 1953

Smooth mud flats 0.001 Deacon 1953

Dry lake bed 0.003 ESDU 1972

Tundra Lewis and Callaghan 1976
Snow-covered 0.01
Patchy snow 0.03
Water-covered, after melt 0.40
Midsummer 2.40

Snow cover (Antarctic) 0.01 Jackson and Carroll 1978

Calm open sea 0.01 ESDU 1972

Snow-covered rolling ground 0.01 ESDU 1972

Smooth desert 0.03 Deacon 1953

Flat desert 0.05 ESDU 1972

Normal sea 0.10 ESDU 1972

Closely mown grass 0.10 Deacon 1953

Short grass 0.14 Rider et al. 1963

Snow-covered farmland 0.20 ESDU 1972

Caspian Sea 0.20 Goptarev 1957

Snow (Sastruga) crosswind 0.70 Jackson and Carroll 1978

Sparse grass, 10 cm high 0.70 Deacon 1953

Nebraska prairie 0.70 Barad 1959

Thick grass, 5 to 6 cm high 0.75 Lovey 1958

Fairly level grassy plains 1.0 ESDU 1972

Salisbury Plain, UK 1.0 Scrase 1930

Kansas prairie 1.0 Businger et al. 1971

Level terrain, low shrubs 2.6 Cramer 1952

Grasslands, - 18 cm high 2.7 Ripley and Redmann 1976

Uncut grass, isolated trees 3.0 ESDU 1972

Grass and trees, mixed 3.5 Shiotani 1962

Semiarid, sparse brush 5.0 Blackadar 1965
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Table 2. Roughness Lengths of Natural Surfaces (continued)

Type of Surface J cm Source

Sparse grass, 50 cm high 5.0 Deacon 1953

Thick grass, 50 cm high 9.0 Deacon 1953

Thick grass, 60 to 70 cm high 8 - 15 Deacon 1953

Brush, scrub growth, open 16 Luers et al. 1981

Field, scattered trees, hedges 25 ESDU 1972

Brush, scrub growth, dense 25 Leurs et al. 1981

India, trees, 13 m high 29 - 34 Panchal and
Chandrasekharan 1983

Fairly level wooded country 40 ESDU 1972

Forest clearings, cutover areas 40 Leurs et al. 1981

Subtropical savannah, grass, 31 - 41 Garratt 1978
scattered trees, 8 m high

Subtropical savannah, shrubs, grass, 8 m; 51 - 61 Garratt 1978
S10 m spacing

Low mountains, hills, unforested 75 Leurs et al. 1981

Fairly level forested plateau 70 - 120 Ming et al. 1983

Tropical rainforest, 40 m high 100 Allen and Lemon 1976

Smooth, open forest 100 - 500 Ming et al. 1983

Coniferous forest 110 Leurs et al. 1981

Pine forest - 20 m trees 110 - 170 Thom 1972

Pine forest - 20 m trees 128 DeBruin and Moore 1985

Forested plateau, rolling 120 - 130 Ming et al. 1983

Rolling terrain, forested scattered 200 - 250 Ming et al. 1983
structures

Fir forest 283 Baumgartner 1957

Forested ridges, 150 to 200 m 350 Nappo 1977

Irregularly forested hills 600-1100 Ming et al. 1983
100 to 200 m high
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Table 3. Annual Cycle of Surface Roughness Lengths for Selected Surfaces

Month

Semiarid, widely 0.02 0.02 0.02 0.02 0.05 0.07 0.1 0.1 0.1 0.1 0.06
spaced low vegetation 0.02

Semiarid, closely 0.17 0.17 0.17 0.17 0.43 0.69 0.95 0.95 0.95 0.56
spaced low vegetation 1 0.95 0.17

Wetlands 0.5 0.5 0.5 0.5 1.25 2.0 2.75 2.75 2.75 1.6 0.5
2.75

Grassland, meadows 0.75 0.75 0.75 0.75 1.15 1.6 2.0 2.0 2.0 2.0 1.4
0.75

Grassland, some trees 1.0 1.0 1.0 1.0 2.5 4.0 5.5 5.5 5.5 5.5 3.25 1.0

Brushland, open 1.6 1.6 1.6 1.6 4.0 6.4 8.0 8.0 8.0 8.0 4.8 1.6

Brushland, dense 2.5 2.5 2.5 2.5 6.3 10.2 14 14 14 14 8.2 2.5

Deciduous forest 18 18 18 18 45 72 100 100 100 100 59 18

Mixed forest 64 64 64 64 78 91 105 105 105 105 85 64
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Table 4. Agricultural-Related Roughness Lengths

Type of Surface ,z cm Source

University research farm 0.11 Sterns 1970

Rice paddie, after harvest 2 Kondo and Yamazawa 1986

Alfalfa 2.7 Jenner and Pelton 1960

Agricultural areas, Japan 3-11 Kondo and Yamazawa 1986

Cashew orchard, 2 m high 3.5 - 4 Panchal and
Chandrasekhama 1983

Potatoes, 60 cm 4 Brown 1976

Farmland, few trees 6 ESDU 1972

Bean crop 1.2 m high 7.4 Thom 1971

Farmland, many hedges 8 ESDU 1972

Low crops, some large obstacles 10 Davenport 1967

Cotton 1.27 m high 13 Stanhill 1976

Fields, trees, hedges, buildings 20 ESDU 1972

Wheat 22 Penman and Long 1960

Tall crops, scattered obstacles 25 Davenport 1967

Farmland, European 25 Van Dop 1983

Citrus orchard 3.2 m 31 Brooks 1959

Citrus orchard 4 m 40 Kalma and Fuchs 1976

Citrus orchard 4.35 m 40 Kalma and Fuchs 1976

Corn 2.2 m 74 ESDU 1972
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Table 5. Inhabited Areas by Population Ranges

Type of
Settlement Population Remarks

Hamlet < 1,000 A settlement too small to be called a village; a grouping of dwellings in a
rural setting; especially one without a church, being in a parish belonging
to a village or town. Sometimes the distinction is that a village has a
constable and a hamlet none. Police protection provided by county, but
normally has volunteer fire department.

Village 1,000 to about Can be unincorporated. If incorporated, usually has a board of three or
2,500 more trustees, a mayor, treasurer, municipal clerk, and a police official.

Residents usually practice a varicity of trades and professions, and several
levels of society are present. Has county or volunteer fire department.

Small Town 2,500 to First level of true ubanization. In general, a place that is a population
about 10,000 and business center and is recognized as such geographically and

politically. A compact settlement engaged mostly in nonagricultural
occupations.

Town 10,000 to Considered to be a municipal corporation with a well-stuctured street
about 50,000 pattern. Usually provides full services to population (that is, public

transportation, garbage collection, police and fire protection). Does not
quite qualify as a metropolitan statistical area (MSA). Some industry.
Well-defined down-town area surrounded by suburbs.

Smali City 50,000 to Metropolitan statistical area (population > 50,000). Regional banking
about center. Usually has complex governmental structure, that is, mayor-
100,000 council, council-city manager, paid elected officials. Occasional air

pollution problems. Small high-rise central core; industrial area, extensive
suburbs.

Medium-sized 100,000 to Major political subdivision. High rise central core area. Center for heavy
City about industry. Complex social and business activities. Experiences extensive

250,000 air pollution episodes.

Large City > 250,000 Extensive high-rise core area. Nonagricultural; industrialized. Suffers
from urban blight, pollution, social, ethnic problems.

Metropolitan 500,000 to
Area about

1,000,000 Alternate definitions for large city. Also defined as primary metropolitan
statistical area (PSMA).

Megatropolis > 1,000,000
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Table 6. Generic Urban Roughness Lengths

[ Type of Surface J_ cm ource

Blacktop or concrete 0.002 Rider et al. 1963

Lawn, 1 cm high 0.1 Deacon 1953

Cut grass, few trees 1 ESDU 1972

Airport runway areas 3 ESDU 1972

Village 40 Leurs et al. 1981

Highways, railways 50 van Dop 1983

Towns 55 Leurs et al. 1981

Light density residential 110 ESDU 1972

City park 130 ESDU 1972

Office buildings 175 ESDU 1972

Urban sprawl 260 Slade 1969

Central business district 330 ESDU 1972

High rise apartments 370 ESDU 1972
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Table 7. Urban Roughness Lengths, North America

City and State or Province ] zocm Source

Columbia, MD 70 Landsberg 1981

Cambridge, MA 74 Dobbins 1977

Montreal, PQ 100 Davenport 1967

Worchester, MA 112 - 168 Yersel and Goble 1986

St. Louis, MO

Central core 170 Clarke et al. 1982

Industrial area 140

Suburbs 30

Minneapolis, MN 200 Deland and Binkowski 1966

London, ON 240 Davenport 1965

Austin, TX 242 Peschier 1973

Philadelphia, PA 260 Slade 1969

Fort Wayne, IN 300 Bowne and Ball 1970

New York, NY 330 Davenport 1960

Table 8. Comparison of z, Values Estimated in Two Ways

Wind Direction [Z (log-profile assumption) (in) z(h/SXm)

10 to 500 2.54 + 0.41 1.68

51 to 900 1.71 ± 0.10 1.60

190 to 2200 1.18 + 0.20 1.23

221 to 2490 0.57 +0.25 1.12

250 to 2840 
1.06 + 0.45 

1.16

285 to 3300 0.82 + 0.17 1.23
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Table 9. Urban Roughness Lengths, British Isles and the Continent

City and Country Zo cm j Source

Leipzig, FRG 38 Davenport 1960

Kew, Coryton, Hampton, UK 43 Heliwell 1971

Reading, UK 70 Marsh 1969

London, UK 78 Heliwell 1971

Uppsala, Sweden 90 Hogstrom et al. 1977

Liverpool, UK 123 Jones et al. 1971

Leningrad, USSR 246 Ariel 1960

Moscow, USSR 300 Ivanov and Klinov 1961

"Kiev, USSR 450 Ariel and Kliwchnikova 1960

Copenhagen, Denmark 750 Jensen 1958

"Hanna (1969) determined that the roughness for Kiev had been calculated without
consideration of a zero plane displacement. Hanna found z. = 150 cm for Kiev.
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Table 10. Urban Roughness Lengths, Japan

* CityadPrfcture Z, zcm. Jsource
Akita, Akita 19 Kondo and Yamazawa 1986

*Ryugasaki, Ibaraki 26 Kondo and Yamazawa 1986

Honjo, Akita 26 Kondo and Yamazawa 1986

Tsuruoka, Yamagata 30 Kondo and Yamauawa 1986

IsskGms31 Kondo and Yamazawa 1986

NohrAia32 Kondo and Yamazawa 1986

SnTcii34 Kondo and Yamazawa 1986

Kooriyama, Fukashima 42 Kondo and Yamazawa 1986

Shiura, Aomori 42 Kondo and Yamazawa 1986

Tatcbayasbf, Ginma 42 Kondo and Yamazawa 1986

Shitotsuma, Ibaraki 44 Kondo and Yamazawa 1986

Funchiki Fukushima 48 Shiotani 1962

KSakat 58 Kondo and Yamazawa 1986

Menacbs, Gunmag 76 Kondo and Yamazawa 1986

Aomoikw, Aomorf 79 Kondo and Yamazawa 1986

Kamagaa Siaa 581 Kondo and Yamazawa 1986

nahbaaFkshi, uma 92 Kondo and Yamazawa 1986

Ishinomaki, Miyagi 104 Kondo and Yamazawa 1986

Kglaai161 Kondo and YamazAwa 1986

MtIrai168 Kondo and Yamazawa 1986

Tokyo, suburbs 40 Shiotani 1962

Tko145-185 Yamamnoto and Shiznanaki 1964

Tokyo __________ 150 Kamei 1955

Tko170 -232 IKondo 1971

Tokyo __________ 232 Kawaziabe 1964

Tko400 Shiotanif 1948

Tko400 Naito 1962
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Figure 3. Zero plane displacement shown as a function of wind speed (see text
for details of regions I, fl, and Ill).
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Figure 4. Annual cycle of surface roughness lengths for selected surfaces.
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Figure 5. Illustration of the consequence of failing to include a zero plane
displacement in surface roughness analyses (after Hanna (1969)
and Ariel and Kliwchnikova (1960)).
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